Learning from promising practices in ensuring effective use of large-scale learning assessment data for education policy and practice

Developing evidence from national and international LSLA for policy and practice

Session 2

Satya.brink@gmail.com
Evidence from national NLSAs

What is the difference between a “result” and “evidence”?

• A result is a finding from a single analysis using the data from your NLSA. For example: The average scores of boys and girls in Science.

• Evidence is a package of findings used to provide a data based response to a policy or practice related question. For example: What would be the most effective policy response to ensure equity between boys and girls? The response should be based on results from several analyses and could be from multiple data sources:
 o Boys have a higher average score in Mathematics than girls in 20XX
 o Girls perform better in Reading than boys in 20XX
 o There is not much difference in scores between boys and girls in Science in 20XX
 o About a third of boys and girls or 80,000 students fall below the expected standard in Mathematics and Reading respectively.
 o Trends over the last X years show that these results seem to persist despite previous policy efforts to improve fundamental skills in Reading and Mathematics.
 o Key policy sensitive affecting performance are class time on subject, individual assistance and practice time.
Policy problem description based on NLSA

Description components should include:

• What is the policy problem? A persistent gender difference over last ten years in performance but in different subjects. Boys in Reading and girls in Mathematics.
• Is the problem national or concentrated in some areas? National
• How serious is the problem? It starts early and affects the school career performance
• How many students are affected? 80,000
• What are the key factors affecting performance? Gender, socio-economic status – both not policy sensitive. Class time on subject, individual assistance and practice time.
Evidence from national NLSAs – Use data to explain

Policy recommendations to increase gender equity could be:

- Increase class time in lower grades in Reading and Mathematics nationally so that teachers can repeat concepts and provide practice opportunities.
- Provide an assistant teacher in Reading and Mathematics lower classes once a week to provide individual attention to weaker students in grades one and two so that these skills are learned early.
- Costs could be XXX (Teacher cost, once a week over a year for two grades for all primary schools) but they can be reduced by using teachers from teacher training.
- Potential impact could be measured in 3 years when grade 1 students are in grade 3.
Frequency of computer use by 15-year olds by types of usage

Source: Programme for International Student Assessment 2000
Per cent of children by disability or chronic illness falling below national average in Mathematics

<table>
<thead>
<tr>
<th>Disability or Condition</th>
<th>Mean Math Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergy</td>
<td>53.6</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>49.9</td>
</tr>
<tr>
<td>Heart disease</td>
<td>49.9</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>43.3</td>
</tr>
<tr>
<td>Cerebral palsy</td>
<td>49.6</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>45.3</td>
</tr>
<tr>
<td>Mental handicap</td>
<td>27.8</td>
</tr>
<tr>
<td>Learning disability</td>
<td>37.4</td>
</tr>
<tr>
<td>Emotional difficulties</td>
<td>48.6</td>
</tr>
<tr>
<td>Other condition</td>
<td>52.4</td>
</tr>
<tr>
<td>Limitation of activity</td>
<td>50.0</td>
</tr>
</tbody>
</table>

National average = 54.7
Who are affected? Targeted frequencies

- Children with high outcomes who don’t need help but benefit when policies target by low income.
- Children with low outcomes who need help but do not benefit when policies target by low income.

Figure 4-2. Strength of the Income Gradient for PPVT-R

<table>
<thead>
<tr>
<th>National Average</th>
<th>Vulnerability Cut-Off Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How far from desired outcomes? Categories and distributions

Proportions of children at different vocabulary skill levels (age 4-5 years) by cycles

Source: National Longitudinal Survey of Children and Youth
NLSLA

Getting better or worse? Trends

Overweight 1994: 5.5% → 1996: 10.6% → 1998: 10.6%
Overweight 1994: 2.5% → 1996: 4.5% → 1998: 4.5%
Not overweight 1994: 94.5% → 1996: 89.4% → 1998: 89.4%
Not overweight 1994: 7.8% → 1996: 5.4% → 1998: 5.7%

- Susceptible to becoming overweight
- Stable - Not overweight
- Stable - Overweight
- Resilient

NLSCY Unweighted Estimates. Based on children who were 10-11 years in cycle 1

More children are gaining weight than losing weight
NLSLA
When do issues start? Pathways
Student pathways in Mathematics, grades 4 to 9, School 8, 2014
NLSLA

When do issues start? Pathways

School pathways over time show schools that are improving or declining in performance.
Who is disadvantaged? Where? Comparisons and concentrations

In which areas did children and families have the greatest access to early childhood educational resources?
NLSLA

Key factors and reasons – Multivariate analyses

Classroom and teaching factors affecting performance – Statistically Significant factors in red

Classroom Factors
- Class time on subject
- Discipline
- Class size

Teaching Factors
- Teacher student relations
- Expectations for success
- Home work
- Formative evaluation
- Use of text books
ILSLA - PISA
International rank – Comparison with performance with comparator countries and within country regions

Pisa maths scores for selected education systems

<table>
<thead>
<tr>
<th>Country</th>
<th>Rank</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanghai</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>*Hong Kong</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

UK breakdown
- Scotland
- England
- N. Ireland
- Wales

Average score: 494

*China does not participate as a country, but is represented by cities such as Shanghai and Hong Kong

Source: OECD
ILSLA - PISA
Consistent student performance in the three domains: Reading, Maths and Science

- Shanghai has consistent high performance in Maths, Reading and Science
- UK in contrast has low scores in Maths and higher student performance in Science
- Taiwan has high scores in Maths, lower scores in Reading and even lower scores in Science
Performance related to a desirable international standard

- The desirable standard in PISA for student performance is level 2 and above.
- The high performers score at Level 5 and above.
- Low performing countries have large proportion of high performers and a small percentage of low performers.
ILSLA (PISA)

Quality education obtains good performance even from disadvantaged students.
ILSLA

Comparison with national results

School marks and national marks: School marks in Mathematics in Grade 12 predict marks in national high school exam better but not as well as they should

• Students who are on the diagonal do as well as their marks in Grade 12 in the National high school exam.

• Students who are above the diagonal do better in their National high school exam than they do in Grade 12 marks. Positive result!

• Students who are below the line do better in Grade 12 marks than they did in their National high school exam.

• Correlation is 0.47 between the two marks.